Pattern Discovery in Melanoma Domain Using Partitional Clustering

نویسندگان

  • David Vernet
  • Ruben Nicolas
  • Elisabet Golobardes
  • Albert Fornells
  • Carles Garriga
  • Susana Puig
  • Joseph Malvehy
چکیده

Nowadays melanoma is one of the most important cancers to study due to its social impact. This dermatologic cancer has increased its frequency and mortality during last years. In particular, mortality is around twenty percent in non early detected ones. For this reason, the aim of medical researchers is to improve the early diagnosis through a best melanoma characterization using pattern matching. This article presents a new way to create real melanoma patterns in order to improve the future treatment of the patients. The approach is a pattern discovery system based on the K-Means clustering method and validated by means of a Case-Based Classifier System.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new method for hierarchical clustering combination

In the field of pattern recognition, combining different classifiers into a robust classifier is a common approach for improving classification accuracy. Recently, this trend has also been used to improve clustering performance especially in non-hierarchical clustering approaches. Generally hierarchical clustering is preferred in comparison with the partitional clustering for applications when ...

متن کامل

Fuzzy Partitional Clustering Algorithms

Fuzzy partitional clustering algorithms are widely used in pattern recognition field. Until now, more and more research results on them have been developed in the literature. In order to study these algorithms systematically and deeply, they are reviewed in this paper based on c-means algorithm, from metrics, entropy, and constraints on membership function or cluster centers. Moreover, the adva...

متن کامل

Evaluation of Partitional Algorithms for Clustering Medical Documents

There are large quantities of information about patients and their medical conditions. The discovery of trends and patterns hidden within the data could significantly enhance understanding of disease and medicine progression and management by evaluating stored medical documents. Methods are needed to facilitate discovering the trends and patterns within such large quantities of medical document...

متن کامل

C ONSTRAINT BASED P ARTITIONAL C LUSTERING – A C OMPREHENSIVE S TUDY AND A NALYSIS Aparna

Data clustering is the concept of forming predefined number of clusters where the data points within each cluster are very similar to each other and the data points between clusters are dissimilar to each other. The concept of clustering is widely used in various domains like bioinformatics, medical data, imaging, marketing study and crime analysis. The popular types of clustering techniques ar...

متن کامل

Shared farthest neighbor approach to clustering of high dimensionality, low cardinality data

Clustering algorithms are routinely used in biomedical disciplines, and are a basic tool in bioinformatics. Depending on the task at hand, there are two most popular options, the central partitional techniques and the Agglomerative Hierarchical Clustering techniques and their derivatives. These methods are well studied and well established. However, both categories have some drawbacks related t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008